
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 327 (2009) 231–248
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Nonlinear vibrations of a radially stretched circular
hyperelastic membrane
Paulo B. Gonc-alves �, Renata M. Soares, Djenane Pamplona

Department of Civil Engineering, Catholic University, PUC-Rio, Rio de Janeiro 22451-900, Brazil
a r t i c l e i n f o

Article history:

Received 28 October 2008

Received in revised form

30 May 2009

Accepted 25 June 2009

Handling Editor: C.L. Morfey
Available online 21 July 2009
0X/$ - see front matter & 2009 Elsevier Ltd.

016/j.jsv.2009.06.023

responding author. Tel.: +55 213527 1188; fax

ail address: paulo@puc-rio.br (P.B. Gonc-alves)
a b s t r a c t

This paper presents a detailed analysis of the nonlinear vibration response of a pre-

stretched hyperelastic membrane subjected to finite deformations and a time-varying

lateral pressure. The problem is both geometrically and materially nonlinear due to

finite deformations and a hyperelastic constitutive relationship. The membrane material

is assumed to be isotropic, homogeneous, and neo-Hookean. First, the exact solution of

the membrane under a uniform radial stretch is obtained. The equations of motion of

the pre-stretched membrane are then derived. From the linearized equations, the

natural frequencies and mode shapes of the membrane are analytically obtained. The

natural modes are then used to approximate the nonlinear deformation field using

the Galerkin method. Several reduced order models are tested and compared with the

results evaluated for the same membrane using a nonlinear finite element formulation.

Excellent agreement is observed. The results show the strong influence of the stretching

ratio on the linear and nonlinear oscillations of the membrane. Finally, the influence of

the constitutive law on linear and nonlinear vibrations is investigated. Results show that

several constitutive laws for hyperelastic rubber-like materials lead to the same

frequency–amplitude relation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Membranes have received considerable attention in recent years due to their applicability in numerous engineering
areas, including space applications, actuators, sensors, robotics, bioengineering devices, and civil engineering structures.
A review of the literature on the static and dynamic behavior of membranes, hyperelastic or not, theoretical and
experimental, with emphasis in practical applications, can be found in Jenkins and Leonard [1], Jenkins [2], and Jenkins and
Korde [3]. In addition, membranes play a significant role in nature [4,5]. In recent years, intensive research has been
conducted on the development of new membrane materials, including shape memory polymers [6,7] and dielectric
elastomers [8–12]. These advanced materials are of interest for use in sensors and vibration control [13,14], bioengineering
[15–17], and thin-films used in compliant microdevices [6].

The analysis of membrane mechanics is an important topic in nonlinear continuum mechanics. In particular, the study
of hyperelastic membranes under finite deformations, such as elastomeric membranes and most biological tissues, is a
rather challenging subject, and in such cases, elasticity in the fully nonlinear range must be employed. The pioneering
works of Rivlin and co-workers [18,19] on nonlinear elasticity is the basis for the analysis of structures under
large deformations. The first developments in this field are collected in the classical work by Green and Adkins [20].
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Recent advances in finite elasticity and useful historical reviews can be found in Libai and Simmonds [21] and Fu and
Ogden [22]. A key point in the analysis of hyperelastic membranes using the theory of finite elasticity is the choice of an
appropriate strain-energy density function. Strain-invariant constitutive models are usually used to describe the behavior
of hyperelastic materials. The simplest constitutive model is the neo-Hookean model, which can be viewed as a
simplification of the Mooney–Rivlin law. These two constitutive laws are widely used in the literature. In addition to these
classical models, Ogden [23,24], Yeoh [25], and Arruda and Boyce [26], among others, have proposed useful constitutive
models for the analysis of rubber-like materials. The reader may refer to the works by Selvadurai [27] and Saccomandi and
Ogden [28] for critical reviews on constitutive models for hyperelastic materials.

The mechanical behavior of biomembranes is usually described via a Fung-type exponential pseudostrain energy
function and similar constitutive laws [4,5]. The mechanical analysis of membranes may provide insight into the analysis of
several clinical procedures and biological phenomena, including cataract surgery, the formation of aneurysms, and balloon
angioplasty [29,30].

After half a century of fruitful research, the equilibrium and stability analysis of hyperelastic membranes continues to be
a topic of interest in applied mechanics [31–35]. This paper considers the nonlinear vibrations of a pressure loaded, initially
flat, pre-stretched circular membrane. Plane deformation of a hyperelastic membrane is one of the classical problems in the
theory of finite elasticity. Several examples are found in the studies by Rivlin and Saunders [36] and Green and Adkins [20].
In addition, Wong and Shield [37] studied the plane deformations of neo-Hookean membranes, and showed that under
large meridional strains, the nonlinear problem can be reduced to a linear one. Radial deformations of a plane sheet
containing a circular hole or inclusion were studied by Verna and Rana [38]. The inflation of a circular membrane by lateral
pressure is another problem of interest in finite elasticity, and has been important in the development of constitutive
equations and the identification of material parameters. Treloar [39] carried out such membrane inflation experiments, and
measured the deformed profiles and stretch ratio distributions in a rubber membrane at different inflation levels. Adkins
and Rivlin [40] used the theory of nonlinear elastic membranes to calculate the inflated profiles for several forms of the
strain-energy function and compared the results with the data obtained by Treloar [39]. Campbell [41] studied an initially
tensioned circular membrane subject to uniform pressure. Studies on the inflation of a flat circular membrane employing
different strain-energy functions were performed by Klingbeil and Shield [42], Hart-Smith and Crisp [43], Foster [44], and
Tielking and Feng [45], among others, who used the minimum potential energy principle to study the axi-symmetric
deformation of a pressure loaded circular membrane with a rigid inclusion. Wineman et al. [46] showed how the measured
profiles and stretch ratio distributions could be used as part of a material identification method to determine the form of
the strain-energy function. Recently, a circular membrane was inflated to determine properties of elastomers by Przybylo
and Arruda [47], and of several polymeric materials by Li et al. [48] and Rachik et al. [49] measured the properties of
several other polymeric materials. Wineman and Shaw [50] studied the influence of thermally induced scissions
of macromolecular networks and their subsequent crosslinking on the post-scission inflation of a circular elastomeric
membrane.

The linear vibration analysis of membranes (drumheads) using the wave equation is a classical problem in mechanics
and applied mathematics [51]; however, several aspects of this problem remain for further research [52,53]. The nonlinear
small-amplitude vibrations of elastic membranes have also been investigated [54,55]. There are fewer studies on the
analysis of the linear, and particularly the nonlinear, vibrations of hyperelastic membranes [1,3,9,56–63].

Therefore, the aim of the present work is to study the linear and nonlinear vibrations of a pre-stretched circular
hyperelastic membrane, with emphasis on a few important nonlinear characteristics, such as frequency–amplitude and
resonance curves, bifurcation diagrams, and basins of attraction. A detailed parametric analysis shows the influence of the
initial radial traction on the linear and nonlinear vibrations of the membrane. The membrane material is assumed to be
isotropic and incompressible, and its behavior is described by the neo-Hookean constitutive law. These hypotheses have
been widely used to describe the behavior of elastomers.

A variational formulation, considering finite deformations, is used to derive the equilibrium equations of the
membrane under a uniform radial stretch and the equations of motion of the pre-stretched membrane. The linear and
nonlinear vibrations are analyzed, and the influence of the pre-stretch on these results is evaluated. The problem is also
analyzed using the finite element software Abaqus 6.5s [64]. Finally, the influence of the constitutive law on the
frequency–amplitude relation is also investigated.
2. Problem formulation

2.1. Hyperelastic membrane theory

This work considers a homogeneous, isotropic, circular hyperelastic membrane of undeformed radius Ro, thickness h,
and mass density G. It is assumed that h/Ro51 so that the deformed membrane can be described by the theory of
hyperelastic membranes under finite deformations [20].

The major aspects of the theory used in this work are outlined below. For a conservative system, the elastic Cauchy
stresses are derived from a strain-energy density function per unit undeformed volume W that is a function of the
deformation tensors. Thus, given an undeformed reference state, the strain-energy density may be described in terms of
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three independent quantities, namely the principal stretches l1, l2, and l3, or alternatively, the strain invariants
I1, I2, and I3:

W ¼Wðl1;l2; l3Þ ¼WðI1; I2; I3Þ (1)

The three strain invariants of the deformation field can be written in terms of the principal stretches li (i ¼ 1, 2, 3) as

I1 ¼ l2
1 þ l2

2 þ l2
3

I2 ¼ ðl1l2Þ
2 þ ðl2l3Þ

2 þ ðl1l3Þ
2

I3 ¼ ðl1l2l3Þ
2 (2)

Rubber-like materials exhibit very small volume changes [65], so incompressibility is usually assumed for
simplicity. If the material is incompressible, I3 ¼ 1, and the strain-energy density is a function of the first two strain
invariants in (2).

The stress components can be determined after choosing the constitutive law. There are several constitutive laws in
literature particularly adapted to the representation of elastomers written in terms of the strain invariants. In this study,
the neo-Hookean constitutive model for the energy density function is initially adopted, and for an incompressible material
is given by

W ¼ C1ðI1 � 3Þ (3)

where C1 is a material parameter. This equation provides a simple but realistic model for a rubber-elastic type material
[27,33,34,65]. The neo-Hookean material description reduces to linear elasticity with a Poisson’s ratio of n ¼ 1

2 for small
strains. The best constitutive law always depends on the deformation range considered in the analysis and on the
membrane material. More refined constitutive laws are considered in Section 5.

Consider an isotropic elastic material, which undergoes finite elastic deformations so that a particle initially at a
position Po in a rectangular Cartesian reference system Xi, moves to position P in a rectangular Cartesian reference system
xi, as illustrated in Fig. 1, where the deformed and undeformed configurations, basic geometric parameters, and associated
coordinate systems are depicted.

The coordinates of a material particle at a point Po on the mid-surface undeformed reference configuration, in a
coordinate system with the origin at the center of the circular membrane, are given by

X1 ¼ r cos y
X2 ¼ r sin y
X3 ¼ 0 (4)

where r, y, and X3 are the radial, circumferential, and transversal coordinates, respectively.
The coordinates of the same typical point P at a given instant t, in an arbitrary deformed configuration are given by

x1 ¼ rðr; y; tÞ cos bðr; y; tÞ
x2 ¼ rðr; y; tÞ sin bðr; y; tÞ
x3 ¼ zðr; y; tÞ (5)

where r, b, and z are the radial, circumferential, and transversal coordinates of the deformed membrane, respectively. The
coordinates r and y and time t are taken as independent variables.
X2Poθ
ρ

X3

Ro

X1

r

x3

Rf
β

Ro

x1

x2

P

z

r

Fig. 1. (a) Undeformed and (b) deformed configurations of the membrane, geometric parameters and associated coordinate systems.
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Since this analysis is on the dynamic nonlinear behavior of a pre-stretched membrane, the coordinates of a deformed
point are

rðr;y; tÞ ¼ roðr; yÞ þ uðr; y; tÞ
bðr;y; tÞ ¼ yþ boðr; yÞ þ vðr; y; tÞ
zðr;y; tÞ ¼ zoðr; yÞ þwðr;y; tÞ (6)

where (see Fig. 2) w(r,y,t), u(r,y,t) and v(r,y,t) are the perturbation components in the radial, transversal and
circumferential directions, respectively and ro(r,y), zo(r,y) and bo(r,y) describes the initial deformed static state.

The principal stretches are defined as

li ¼
dSi

dsi
(7)

where dSi and dsi, are the deformed and undeformed lengths, respectively, of an infinitesimal element in the principal
direction.

Thus, considering Eq. (7), the in-plane principal stretches are given by

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
;r þ r2f2

;r þ z2
;r

q
(8)

l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
;y þ r2f2

;y þ z2
;y

q
r

(9)

where q( )/qr ¼ ( ),r and q( )/qy ¼ ( ),y.
The principal stretch in the normal direction l3, taking into account the incompressibility condition l1l2l3 ¼ 1, is

given by

l3 ¼
1

l1l2
(10)

or, physically:

l3 ¼
H

h
(11)

where H is the deformed membrane thickness.
Thus, the strain invariant I1 is given by

I1 ¼
X3

i¼1

l2
i ¼ r2

;r þ r2b2
;r þ z2

;r þ r2
;y þ r2b2

;y þ z2
;y=r

2

þ
r2

ðr2
;r þ r2b2

;r þ z2
;rÞðr

2
;y þ r2b2

;y þ z2
;yÞ � ðr;rr;y þ r2b;rb;y þ z;rz;yÞ

2
(12)

The last term in (12) corresponds to l3
2, and generates the nonlinear terms in the equilibrium equations.
Z, zo, w

Ro θ, βο, v

ρ, ro, uρo

Fig. 2. Static and dynamic components in the cylindrical coordinate system.
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The elastic strain energy U, is the volume integral of W in the undeformed configuration, which in the present case
becomes

U ¼

Z Ro

0

Z 2p

0

Z h

0
Wðr; r;r; r;y; z; z;r; z;y;b;b;r;b;y;r; yÞrdz dydr (13)

The pressure potential energy is the product of the pressure by the integral of the deflection on the membrane [45,66].
We must rigorously evaluate the exact volume of the membrane by taking into account both the transversal and in-plane
displacements. One possible approximation is to assume that the pressure works only on the transversal component. In
this case, the pressure vector is assumed to be parallel to z during the inflation, and is not normal to the membrane. This
approximation slightly affects the shape of the membrane and gives a less rounded surface. Of course, such an
approximation is only valid if the in-plane displacement components are small.

The work term We, considering a radial stretch due to a uniform distributed force f along the circular boundary, and a
uniform pressure ph(t), is

We ¼ 2prf ðro � rÞjr¼Ro
þ phðtÞDV (14)

where DV ¼ Vf�Vo is the variation of the volume enclosed by the structure due to the pressure, Vf is the volume enclosed by
the deformed membrane, and Vo is the volume enclosed by the undeformed structure. Since the membrane is initially flat,
Vo ¼ 0.

The kinetic energy T is given by

T ¼

Z Ro

0

Z 2p

0

Z h

0
G
ð _u2
þ _v2

þ _w2
Þ

2
rdz dydr (15)

where G is the mass density of the material in the natural configuration, and ð Þ
�

¼ @ð Þ=@t. Due to the incompressibility
condition, the mass density remains constant during the deformation process.

Similar formulations for other material behaviors based on strain invariant constitutive laws, such as Mooney–Rivlin
material, can be derived in a very straightforward manner by modifying the strain-energy density given by Eq. (3). The
influence of different constitutive laws is analyzed in Section 5.
3. Static analysis

The membrane is first uniformly stretched in the radial direction, reaching a final radius Rf, and then fixed along the
edge. The equations derived in the previous section can be specialized to solve this problem. Since only axi-symmetric
deformations are considered, all variables are independent of the circumferential coordinate y. Because the deformation is
axially symmetric, the principal directions of stretch are known a priori to be in the meridional, circumferential, and normal
directions, relative to the deformed surface. Denoting the meridional direction as (1) the circumferential direction as (2)
and the normal direction as (3) the principal stretches are given by

l1 ¼
dro

dr l2 ¼
ro

r l3 ¼
r

roro;r
(16)

and the strain energy reduces to

U ¼

Z Ro

0

Z 2p

0
C1h r2

o;r þ
r2

o

r2
þ

r2

r2
or2

o;r
� 3

" #
rdz dydr (17)

Here, the membrane equations are obtained by directly minimizing the total potential energy. From Eqs. (17) and (14),
the following nonlinear differential equilibrium equation in terms of the radial coordinate function-ro(r) is obtained:

ro

r �
3r3

r3
or2

o;r
� ro;r � rro;rr þ

3r2

r2
or3

o;r
�

3r3ro;rr

r2
or4

o;r
¼ 0 (18)

and the associated boundary condition is

roðRoÞ ¼ Rf (19)

The exact solution of Eq. (18) that satisfies the boundary condition (19) is

roðrÞ ¼ dr (20)

where d ¼ Rf/Ro is the radial stretch ratio. The static transversal and circumferential displacement components, zo and bo,
are zero.
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Therefore, the principal stresses and stretches are given, respectively, by

s1 ¼ s2 ¼
2C1ðd

6
� 1Þ

d4
(21.a)

l1 ¼ l2 ¼ d; l3 ¼ 1=d2 (21.b)

4. Dynamic analysis

The stretched membrane is next subjected to a transversal time-varying pressure, and its nonlinear vibrations are
analyzed. The total displacement field with respect to the undeformed configuration is given by

rðr; y; tÞ ¼ drþ uðr; y; tÞ
bðr; y; tÞ ¼ vðr; y; tÞ
zðr; y; tÞ ¼ wðr; y; tÞ (22)

Substituting (22) into Eqs. (13)–(15) gives the Lagrange function

L ¼ T � U þWe (23)

in terms of u, v, and w.
The nonlinear equations of motion are then obtained by applying Halmilton’s principle. They are:

r @W

@r
�

@

@r
@W

@r;r

� �
�

@

@y
@W

@r;y

 !
þ rG @

2u

@t2
� z

@u

@t
¼ 0 (24.a)

@W

@b
�

@

@r
@W

@b;r

 !
�

@

@y
@W

@b;y

 !
þ rG @

2v

@t2
� z

@v

@t
¼ 0 (24.b)

@W

@z
�

@

@r r @W

@z;r

� �
�

@

@y
r @W

@z;y

 !
þ rG @

2w

@t2
� z

@w

@t
¼ 0 (24.c)

where z ¼ c/Cc is the damping ratio and Cc is the linear critical damping.
The uniformly distributed hydrostatic pressure is given by

phðtÞ ¼ Po cosðOtÞ (25)

where Po is the excitation magnitude and O is the excitation frequency.

4.1. Linear free vibration analysis

Linearizing Eqs. (24.a)–(24.c), the in-plane equations are decoupled from the equation in the transversal direction. By
taking Eq. (20) into account and ignoring the damping and external load, the following linearized equation of motion in the
transversal direction is obtained:

@2w

@t2
¼

2C1

G
1

d6
� 1

� �
@2w

@r2
þ

1

r
@w

@r þ
1

r2

@2w

@y2

 !
(26)

which is similar to the classical wave equation if

c2 ¼
2C1

G
1

d6
� 1

� �
(27)

The free vibration modes are obtained by solving Eq. (26) together with the relevant boundary and continuity conditions.
These are:

wðr;y; tÞ ¼ AmnJn amn
r
Ro

� �
cosðnyÞ cosðomntÞ (28)

where Amn is the modal amplitude; n is the number of waves of the vibration mode in the circumferential direction; Jn is the
Bessel function of the first kind and order n; amn are the zeros of the Bessel function Jn numbered in the order of increasing
magnitudes (m ¼ 1,2,3,y,N, is the number of the zero); omn is the natural (circular) frequency of the (m,n) mode. The
natural frequencies of the stretched hyperelastic membrane are given by

omn ¼ amn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C1ðd

6
� 1Þ

R2
od

6G

vuut (29)
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If the limit d-N in (20) is taken, one can conclude that as the stretching ratio increases, the frequencies converge
asymptotically to

omnðd!1Þ ¼ amn

ffiffiffiffiffiffiffiffiffi
2C1

R2
oG

s
(30)

4.1.1. Linear vibration results

A circular membrane with initial radius Ro ¼ 1 m, thickness h ¼ 0.001 m, and mass density G ¼ 2200 kg/m3 is
considered for the numerical analysis. The constant of the neo-Hookean material is C1 ¼ 0.17 MPa. The adopted
stress–strain relation and material constant were obtained experimentally and are given in [27]. Fig. 3 shows the variation
of the natural frequencies as a function of the wavenumbers m and n for a stretching ratio d ¼ 1.10. For a given value of n,
the frequencies increase linearly with m, while the variation of frequencies with n for a given value of m is slightly
nonlinear. The influence of the stretching ratio d on the natural frequencies is illustrated in Fig. 4 for the three lowest
natural frequencies, and the corresponding vibration modes are shown in Fig. 5. The frequencies increase quickly from zero
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as d increases from 1 (unstretched configuration), and tend to the upper bound given by Eq. (30) for d42. The dashed lines
denote the upper bounds. All frequencies display similar behavior. The linear frequencies are independent of the initial
membrane thickness h.

To help in the derivation of an accurate low dimensional model for the free and forced finite amplitude nonlinear
vibration analysis of the membrane, the convergence of the natural frequencies and modes shapes is first analyzed using
the finite element software Abaqus 6.5s. Solid, shell, and membrane elements were tested. Convergence of the natural
frequencies up to three decimal places can be obtained using the membrane elements M3D4 or M3D3 and a mesh of 9789
elements. The stretched configuration is accomplished by imposing an initial uniform radial displacement along the
boundary (Rf ¼ dRo) in the FE program. Then, the dynamic analysis is performed considering the initially stretched
membrane fixed along the boundary. The vibration modes and frequencies are computed for increasing values of the
stretching ratio d. The finite element (FEM) results for the natural frequencies are compared with the analytical results
(AN), Eq. (29), in Table 1. The FE frequencies are computed using the subspace iteration method and the Q-R algorithm [64].
4.2. Nonlinear vibration analysis

First, the nonlinear free vibration response of the membrane under large and small-amplitude vibrations is obtained
using the FE method. The free vibration displacement components u, v, and w along the deformed radius of the membrane
(d ¼ 1.10) for a typical large amplitude axi-symmetric configuration are illustrated in Fig. 6. The numerical results show
Fig. 5. The three lowest vibration modes of the circular membrane. (a) m ¼ 1; n ¼ 0; (b) m ¼ 1; n ¼ 1; (c) m ¼ 1; n ¼ 2.

Table 1
Vibration frequencies (rad/s).

m n d ¼ 1.10 d ¼ 1.50 d ¼ 2.0

FEM AN % FEM AN % FEM AN %

1 0 19.729 19.729 0.0 28.551 28.551 0.0 29.456 29.663 0.697

1 1 31.441 31.435 �0.019 45.503 45.498 �0.011 47.268 47.262 �0.013

1 2 42.141 42.235 0.222 60.977 60.978 0.002 63.359 63.341 �0.028
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Fig. 6. (a) Variation of the displacements of the pre-stretched membrane under large amplitude vibrations along the deformed radius (d ¼ 1.1). (b)

Magnification of the in-plane displacements.
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that during the transversal vibrations, the in-plane components u and v are negligible compared with the transversal
displacement w. Similar results are found for the forced vibrations of the membrane under pressure load. For derivation of a
low dimensional model for the nonlinear transversal vibrations of the membrane, the in-plane displacements u and v are
neglected and Eq. (24.c) reduces to
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The accuracy of this hypothesis is corroborated in the following analysis.
To obtain the nonlinear response of the stretched membrane, the transversal displacement field is approximated by a

sum of M�K natural modes:

wðr; y; tÞ ¼
XM
m¼1

XK
n¼1

AmnðtÞJn amn
r
Ro

� �
cosðnyÞ (32)

where Amn(t) are the time-dependent modal amplitudes.
The Galerkin method is applied so that the nonlinear partial differential equation of motion in the transversal direction,

Eq. (31), is transformed into a system of M�K ordinary differential equations of motion in the time domain.

4.2.1. Nonlinear vibration results

The nonlinear free undamped vibrations (ph(t) ¼ 0; z ¼ 0), which are associated with the lowest natural frequency
(m ¼ 1; n ¼ 0) and correspond to the first axi-symmetric mode, are first considered. The transversal displacement is
approximated by expanding Eq. (32) with K ¼ 0 and an increasing number of radial modes (M ¼ 1, 2, and 3). The equations
of motion are then solved using continuation techniques [67], and the frequency–amplitude relation is obtained. Fig. 7
shows the variation of each modal amplitude in Eq. (32) considering an increasing number of terms in the Galerkin
approximation for a stretched membrane with d ¼ 1.10. The results indicate that a reduced model with only one degree of
freedom (M ¼ 1) is sufficient to obtain the correct response up to very large deflections. The amplitudes of the subsequent
modes (A20 and A30) are rather small when compared to A10. A reduced order model with only one degree of freedom may
therefore be used to describe the frequency–amplitude relation up to very large deflections.

To evaluate the accuracy of the reduced order models, the amplitude–frequency relation is obtained using the finite
element software Abaquss. To do this, a mesh of 576 membrane elements, which is able to handle both the geometric and
material nonlinearities, is used, and the response is obtained for a node on the undeformed membrane with the
coordinates (r,y) ¼ (0.5, 0). A total of 1731 nonlinear equations of motion are numerically integrated, and
the frequency–amplitude relation is obtained using the methodology proposed by Nandakumar and Chatterjee [68]: the
time response of the slightly damped system is obtained for a chosen node, and the maximum amplitude and
corresponding period between two consecutive positive peaks are computed at each cycle. Consider two successive peaks
at times T1 and T2. Let their average value be A1. Let the trough between these two positive peaks be A2. We then define the
amplitude as A ¼ (A1�A2/2), and the frequency as o ¼ 1/(T1�T2). The resulting amplitude and frequency values are plotted
to give the curve. A smaller number of finite elements was used here than in natural frequency analysis, because the
convergence of the time response in our case can be attained with a less refined discretization, leading to less
computational effort. The finite element formulation naturally takes into account the influence of the in-plane
displacement and inertia forces, which are neglected in the theoretical model. The FE results are compared with the
results of the reduced order models obtained for the same set of coordinates in Fig. 8. An excellent agreement between the
two models is observed. For small vibration amplitudes, the response shows a strong increase in the natural frequency. As
the vibration amplitude increases, the hardening effect decreases, and the curve veers upward tending to a constant
frequency value for large vibration amplitudes.

Since the SDOF model compares well with the more refined modal solutions and with the FE results, this model is
selected to perform a parametric analysis on the influence of the problem parameters on the nonlinear response.
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Continuation algorithms are used to obtain all results, and Floquet theory is applied to ascertain the stability of the periodic
solutions.

Fig. 9 illustrates the influence of the stretching ratio d on the nonlinear frequency–amplitude relation. As the stretching
ratio d increases, the nonlinearity decreases, and the relation approaches linearity for d42. All curves converge
asymptotically to the same value of o as the vibration amplitude increase. By calculating the limit of the nonlinear
equation of motion in the transversal direction, Eq. (24.c), as d-N, one obtains the linear equation of motion equation
(26). Both the natural frequency and the frequency–amplitude relation converge to same value of o as d increases. This
value is given by Eq. (30). All frequencies depict the same nonlinear behavior observed here for m ¼ 1 and n ¼ 0. For a
lightly tensioned membrane, the variation of the nonlinear frequency with the amplitude is rather strong. The variation
between the natural (minimum) frequency and the maximum natural frequency, given by Eq. (30), is a function of d only
and is given by

omnð1Þ

omn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d6

d6
� 1

s
(33)

For example, when d ¼ 1.02, the variation of o10 is of approximately 200%, as shown in Fig. 9. The characteristics of the
curve can be explored for membrane sensor and actuator design [69].
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The forced vibrations of the membrane are also considered. Fig. 10 shows the nonlinear resonance curve of the three
reduced order models for d ¼ 1.10 and an amplitude of excitation Po ¼ 1. In spite of the high degree of model nonlinearity,
accurate results up to large deflections are clearly obtained. Additionally, the maximum amplitude of the steady-state
response obtained by the FEM for selected values of the forcing frequency compare well with the present solution both for
small and large vibration amplitudes. This can be explained, as shown previously, by the fact that the nonlinearity of the
response decreases as the vibration amplitude increases, which lessens the importance of higher modes in the large
amplitude response. This behavior is different from that of most structural elements, where the degree of nonlinearity
increases with the vibration amplitude.

Fig. 11 shows the resonance curves of the pre-stretched membrane for stretching ratios varying from d ¼ 1.02 to 2.00. All
curves converge to the linear resonance curve as the vibration amplitude increases. As d increases, the nonlinearity
decreases, and is nearly linear for d ¼ 2.0.

To gain insight into the nonlinear dynamic behavior of the membrane, the force response curves are obtained for
different membrane parameter values. Fig. 12 shows, for selected values of the excitation frequency and d ¼ 1.10, the
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bifurcation diagrams as a function of the forcing amplitude Po. In Fig. 12 and henceforth, dashed lines represent unstable
responses, while continuous lines represent stable responses. Depending on the value of Po and O, the membrane may
display either one or three responses. For example, for an excitation frequency O ¼ 21, which is near the lowest natural
frequency, there are two stable and one unstable solution for a large range of Po. The stable and unstable branches are
connected by saddle-node bifurcations where one Floquet multiplier crosses the unit circle through +1 (SN in the figures).
For values of the excitation frequency away from the resonance region, only one response (stable) is observed.

Fig. 13, where the coordinate of the Poincaré map A10 is plotted as a function of the excitation frequency, shows the
bifurcation diagrams for three different values of the stretching ratio d. In each case, two saddle-node bifurcations are
observed. As the stretching ratio increases, the nonlinearity of the response decreases, decreasing the frequency range
where unstable solutions exist, as expected. Fig. 14 shows bifurcation diagrams with the magnitude of the forcing Po as the
control parameter, and increasing values of the stretching ratio d. In each case, the forcing frequency is chosen in the main
resonance region of the hardening system, just to the right of the natural frequency of the pre-stretched membrane. This is
the region where nonlinear effects are most important. As before, one can observe the decreasing influence of the
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nonlinearity with increasing radial stretching. The influence of the damping ratio is illustrated in Fig. 15, where bifurcation
diagrams are obtained for two values of the radial stretching ratio and increasing values of the damping coefficient. The
influence damping increases as the stretching ratio increases. The damping reduces the multiplicity solution region and
jumps where co-existing stable solutions may occur.
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The influence of the system and force parameters on the degree of nonlinearity of the membrane response can also be
observed in the topological complexity of the basin of attraction. Fig. 16 illustrates the basin of attraction of the membrane
for three sets of parameters. The parameters are chosen in such a way that the response lies in the main resonance region
where three solutions occur: one unstable medium amplitude solution, one stable small amplitude solution, and one stable
large amplitude solution. The dark gray color corresponds to the basin of attraction of the resonant large amplitude
oscillation, while light gray corresponds to the basin of attraction of the small amplitude oscillation. A black cross denotes
the two attractors. As the radial stretching ratio increases, the complexity of the basin topology decreases with a smaller
number of light and dark gray bands. It is interesting to note that in the main resonance region, most initial conditions lead
to solutions that converge to the large amplitude attractor.

5. Influence of constitutive law

There are several examples in the literature of the use of constitutive laws for the modeling of hyperelastic rubber-like
materials characterized by large strains and the absence of irreversible strains during the loading–unloading cycles. The
aim of this section is to compare the different constitutive models. Thus, the constitutive equations must be fitted for each
material using appropriate experimental data. Here, the reference data correspond to the stress–strain relation obtained
experimentally for the membrane analyzed in Ref. [27], and shown in Fig. 4 of the referred paper.

There are several constitutive laws in the literature particularly adapted to the representation of elastomers based on
strain invariants. Rivlin [70] has proposed the following polynomial form for the energy density function

w ¼
X
m;n

CmnðI1 � 3ÞmðI2 � 3Þn (34)

also known as the Mooney–Rivlin strain-energy density function, because the first-order polynomial function

w ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ (35)

which was first been introduced by Mooney [71]. Eq. (35) is a function of two constants, C1 and C2. This is probably one of
the most used strain densities in the literature. The neo-Hookean strain density function can be considered as a special case
of Eq. (35) with C2 ¼ 0.

The constitutive model for incompressible hyperelastic materials proposed by Yeoh [25] assumes that the strain energy
is a power series of the term (I1�3), being a generalization of the neo-Hookean model. It is thus written as

W ¼
XN
i¼1

CiðI1 � 3Þi (36)

where N is the number of terms in the series and Ci are material parameters.
Arruda and Boyce [26] proposed the following constitutive law for rubber-like materials:

W ¼ m ðI1 � 3Þ

2
þ
ðI2

1 � 9Þ

20l2
m

(
þ

11ðI3
1 � 27Þ

1050l4
m

þ
19ðI4

1 � 81Þ

7000l6
m

þ
519ðI5

1 � 243Þ

673750l8
m

)
(37)

where m and lm are the constants of the material.
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Another constitutive law is found in Ogden [23,24], which is based on the experimental results obtained for rubber-like
materials by Treolar [39]. In this case the strain-energy density function is given by

w ¼
X3

n¼1

mnðl
an
1 þ lan

2 þ lan
3 � 3Þ

an
(38)

where li are the extensions in the principal directions, and mn and an are material parameters.
In order to establish the constants for each constitutive law, the experimental stress–strain curve given in [27] and used

for the determination of the neo-Hookean constitutive law is supplied to the FE program Abaquss, and the material
constants for each constitutive model are calculated using an error minimization procedure (given in Table 2). The three
lowest natural frequencies obtained for each model are given in Table 3 and compared with the neo-Hookean theoretical
results obtained from Eq. (29). They give almost identical results. The largest difference is obtained for the Ogden model.
The stress–strain curve for each model is shown in Fig. 17. The frequency–amplitude relation is then obtained for each
constitutive law, and using the methodology proposed by Nandakumar and Chatterjee [68] as explained in Section 4. For
the numerical analysis, 576 membrane elements are used, which gives 1731 equations of motion. The results are compared
with the solution obtained using the neo-Hookean constitutive law in Fig. 17 for a stretching ratio d ¼ 1.10. The membrane
gives the same overall behavior independent of the adopted constitutive law (Fig. 18).
Table 2
Elastic constants for each constitutive law.

Neo-Hookeano C1 ¼170000 Pa

Mooney–Rivlin C1 ¼169720.3 Pa C2 ¼ �18.7 Pa

Yeoh (N ¼ 3) C1 ¼163694.04 Pa C2 ¼ 209 Pa C3 ¼ �1.84 Pa

Arruda–Boyce m ¼ 331373.66 Pa lm ¼ 18

Ogden m1 ¼ 1279517.5 Pa a1 ¼1.47875

m2 ¼ �16902.5 Pa a2 ¼ 1.90802

m3 ¼ �949448.8 Pa a3 ¼ 1.07815
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Fig. 17. Stress–strain curves obtained by various models using the same experimental data [27].

Table 3
Linear vibration frequencies (rad/s).

d ¼ 1.10

m n Neo-Hookeano Mooney-Rivlin % Yeoh (N ¼ 3) % Arruda–Boyce % Ogden %

1 0 19.771 19.754 0.086 19.404 1.856 19.538 1.178 18.699 5.422

1 1 31.412 31.384 0.089 30.827 1.862 31.040 1.184 29.708 5.424

1 2 41.817 41.780 0.088 41.040 1.858 41.323 1.181 39.550 5.421
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6. Conclusions

The mathematical modeling for the nonlinear vibration analysis of a pre-stretched hyperelastic membrane under finite
deformations is presented. The membrane material is considered to be homogeneous, isotropic, and neo-Hookean. First,
the exact solution of the stretched membrane is obtained, which shows that all relevant quantities are a function of the
material constant and the stretching ratio in the radial direction (deformed radius/undeformed radius) only. The equations
of motion of the stretched membrane are then obtained. By analytically solving the linearized equations of motion, the
vibration modes and frequencies of the hyperelastic membrane are obtained, and these normal modes are used, together
with the Galerkin method, to obtain low-order approximations of the nonlinear dynamic response. The same problem is
also analyzed using the finite element software Abaquss. The results show that an sdof model can give accurate results up
to very large deflections. The accuracy of this low-order model is verified via comparisons with the higher order modal
approximations, and the numerical values are computed by the finite element method, which compare rather well with the
theoretical results. The results highlight the influence of the stretching ratio on the vibration frequencies, nonlinear
frequency–amplitude relation, and bifurcation diagrams. It is shown that a lightly stretched membrane displays a highly
nonlinear response, that the nonlinearity decreases as the stretching ratio increases, and the response becomes practically
linear for a deformed radius of twice the initial value. Both the frequency–amplitude relation and the corresponding linear
frequency converge to the same frequency upper bound as the radial stretch and/or vibration amplitude increases. This
explains the accuracy of the low-order models for large finite amplitude oscillations of the hyperelastic membrane. Finally,
the membrane is analyzed using different invariant-based constitutive models, including the Mooney–Rivlin, Yeoh, Ogden,
and Arruda–Boyce models. The results show that the membrane exhibits the same non-linear frequency–amplitude
relation for all tested models. Therefore, due to its high accuracy, the present formulation and theoretical results may serve
as important patch tests for guiding the development of fully nonlinear numerical and analytical models that can address
more complex geometries and boundary conditions.
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